Pāngarau

whārite tukutahi

simultaneous equation

tūingoa

WHAKAMĀRAMA

Ko ētahi whārite e rua e whai pānga ana tētahi ki tētahi. He ōrite ngā taurangi o ia whārite, ā, he ōrite hoki t/ētahi otinga o ngā whārite. Ka kīia ērā, he otinga tukutahi.

Two related equations. The variables of each equation are the same and one or more of the solutions to the equations are the same. These are called simultaneous solutions.

Tauira KŌrero

Whakamāramatia mai ngā mahi katoa hei whakaoti i ēnei whārite tukutahi.

Whakaaturia ngā whārite tukutahi nei ki te kauwhata rārangi.

E tohu ana te otinga o ēnei whārite tukutahi i te aha?

WhakamĀrama Āpitihanga

Ko te whakaatu i ngā whārite tukutahi ki te kauwhata tētahi ara whakaoti. Hei tauira:

x

3

2

1

0

1

whārite 1 (kākāriki)

y = x + 2

1

0

1

2

3

wharite 2 (whero)

y = 2x – 1

5

3

1

1

3

Ko te wāhi e pūtahi ana ngā rārangi e rua, koia te otinga tukutahi o ngā whārite.

Koia nei te ara taurangi hei whakaoti i ēnei whārite tukutahi:

Takenga Mai

whārite - equation

tukutahi - together, simultaneous

Tauira KŌrero

Whakamāramatia mai ngā mahi katoa hei whakaoti i ēnei whārite tukutahi.

Whakaaturia ngā whārite tukutahi nei ki te kauwhata rārangi.

E tohu ana te otinga o ēnei whārite tukutahi i te aha?

WhakamĀrama Āpitihanga