Pāngarau

tau tapatoru

triangular numbers

tūingoa

WHAKAMĀRAMA

Ko te raupapatanga tau: {1, 3, 6, 10, 15 ...}. Ka hua ake ngā tau tapatoru i te tāpiritanga haere o ngā tau tatau, arā, {1, 1+2, 1+2+3, 1+2+3+4, 1+2+3+4+5 ...}

The sequence of numbers: 1, 3, 6, 10, 15 ...}. The triangular numbers arise from the ongoing addition of the counting numbers: {1, 1+2, 1+2+3, 1+2+3+4, 1+2+3+4+5 ...}

Tauira KŌrero

Tuhia ngā tau tapatoru tuatahi e rima.

Me pēhea te whiriwhiri i te tau tapatoru tuaiwa?

Ko te n(n + 1) ÷ 2 te whārite taurangi hei whiriwhiri i te tau tapatoru tua-n.

WhakamĀrama Āpitihanga

He whakaahuahanga tēnei o ngā tau tapatoru:

Tauira KŌrero

Tuhia ngā tau tapatoru tuatahi e rima.

Me pēhea te whiriwhiri i te tau tapatoru tuaiwa?

Ko te n(n + 1) ÷ 2 te whārite taurangi hei whiriwhiri i te tau tapatoru tua-n.

WhakamĀrama Āpitihanga